We can model the radius function, R(t), with respect to time.
The initial radiusis 5 cm and it increases 7 cm /second, so we can write:
![R(t)=5+7t](https://img.qammunity.org/2023/formulas/mathematics/college/n7gqipns372xndxh5fhc9s426qqosbrs5n.png)
• At ,t = 4 ,second, the radius is:
![\begin{gathered} R(t)=5+7t \\ R(4)=5+7(4) \\ R(4)=5+28 \\ R(4)=33 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lvuhqb0630lx1ztg06iwii3rf1bjntx8m3.png)
We can find the area of the spotlight by substituting r = 33 into the circle area formula. This is shown below:
![\begin{gathered} A=\pi r^2 \\ A=\pi(33)^2 \\ A=1089\pi cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ddmlkt6pbkk8hiwa1unjw3kiupnxdige0g.png)
• At ,t = 7 ,second, the radius is:
![\begin{gathered} R(t)=5+7t \\ R(7)=5+7(7) \\ R(7)=5+49 \\ R(7)=54 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q9w1bvqkvr4hyqvvxiwjij31qbh9pf9q23.png)
We can find the area of the spotlight by substituting r = 54 into the circle area formula. This is shown below:
![\begin{gathered} A=\pi r^2 \\ A=\pi(54)^2 \\ A=2916\pi cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f9udxl51dhn6x780rsvgw3t18cq9k6u9rj.png)