Note that the side of each square is unity.
Along the horizontal, it has 3 complete squares, so the length of Henry's rectangle is 3 units,
![\begin{gathered} L=1+1+1 \\ L=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hadxa4k0xmq46kapij7b3k0q88onlmt2rg.png)
Along the vertical, it has 2 complete squares while 1 half heighted rectangle, so the width of Henry's rectangle is,
![\begin{gathered} W=1+1+(1)/(2) \\ W=1+1+0.5 \\ W=2.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qems70liaik747l9994j7j99dcakntgz0d.png)
Solve for the area of the rectangle as,
![\begin{gathered} \text{Area}=\text{Length}*\text{ Width} \\ \text{Area}=3*2.5 \\ \text{Area}=7.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k2yo3h7a2refjyznhc3xi5emspiuylxw3i.png)
Thus, the Henry's rectangle is 3 units long, 2.5 units wide, and the area of the rectangle is 7.5 square units.