The given function is,
![y=-5\cos ((\pi)/(2)(x-3))+6](https://img.qammunity.org/2023/formulas/mathematics/college/ao2wmwxp95ys2smldy6jiizab2rzzl9g7z.png)
The graph can be drawn as,
The period will be distance between two consequetive maximas,
![\text{Period}=1-(-3)=4](https://img.qammunity.org/2023/formulas/mathematics/college/ls9q3abcytbgjxtk9shx5n0oryq5r3gwnl.png)
Thus, period is correct.
The amplitude can be determined as,
![\begin{gathered} Amplitude=(\max -\min )/(2) \\ =(11-1)/(2) \\ =5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m0ysc2nb9p2bqn7yyv0ai4bqjva2baur71.png)
Thus, amplitue is incorrect.
The range is,
![y\in\lbrack1,11\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/gixeipi29c678zxapeae72lk7l4rf84wq2.png)
Thus, the range is correct.
The midline is,
![\begin{gathered} \text{midline}=(\max +\min )/(2) \\ =(1+11)/(2) \\ =6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ev5jay2c9t3dbnyghv7qi1dqak5hfc70q3.png)
Thus, the midline is correct.
Thus, option (b) is the solution.