Given:
![\begin{gathered} 3y+6\ge5x \\ y\leq3 \\ 4x\ge8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rkfh4cjn63op5et8wuijwzjkygcoyxakvk.png)
And we have that:
![\begin{gathered} 4x\ge8 \\ (4x)/(4)\ge(8)/(2) \\ x\ge4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/530mxmj92eno5lrhula7ch0ncjsfxe07ki.png)
Therefore, both together imply that:
![10≤5x≤3y+6](https://img.qammunity.org/2023/formulas/mathematics/college/ffvev3i6pmfjbp420iey6gmm3pkyvs862d.png)
So we get that:
![10+3y≤5x+3y≤6y+6≤6\cdot3+6=18+6=24](https://img.qammunity.org/2023/formulas/mathematics/college/k7urviqntwifqgj65b2emi9d0w4bw0mk4w.png)
since we are given that y ≤ 3, so we also get:
![\begin{gathered} 10+3y≤6y+6 \\ 10+3y-6\leq6y+6-6 \\ 4+3y\leq6y \\ 4+3y-3y\leq6y-3y \\ 4\leq3y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3opgo5upk9dezjvl66h8bzi8jgm8sej0z9.png)
Now we have:
![4=10+4≤10+3y≤5x+3y≤24](https://img.qammunity.org/2023/formulas/mathematics/college/7j79hc2awhgkxolg19wxb38fke9qwqu3at.png)
and then also the following:
a) The maximum of Q = 5x + 3y is 24, and the minimum of Q is 14.
Answer:
Maximum = 24
Minimum = 14
b) The new maximum would be the negative of the original minimum, and the new minimum would be the negative of the original maximum, therefore:
![14≤5x+3y≤24](https://img.qammunity.org/2023/formulas/mathematics/college/b68cufbdyii60aro7j4zd676qs7koxnvvt.png)
This is:
![\begin{gathered} 14≤5x+3y \\ and \\ 5x+3y≤24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vn86vnk3uexpy5y2oqo71w55arfpls46wc.png)
Then we can multiply both sides of both inequalities by -1, but we have to switch the direction of these inequalities:
![\begin{gathered} 14(-1)\leq5x(-1)+3y(-1) \\ -14\leq-5x-3y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mj31d04j4wkojgga5ov2bt45tg75wy1v2e.png)
And
![\begin{gathered} 5x(-1)+3y(-1)\leq24(-1) \\ -5x-3y\leq-24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j4mjch909wvu7yyht1c7g5ec62rwjum36k.png)
0r put in the correct order, from smallest to largest, we get:
![-24≤-5x-3y≤-14](https://img.qammunity.org/2023/formulas/mathematics/college/lrnxjaaye130s319a355loy7pj69vmy7o5.png)
Answer:
Maximum = -14
Minimum = -24