Solution:
Consider the following equations:
Equation 1:
![4\mleft(A+4\mright)-9\mleft(A-4\mright)=37](https://img.qammunity.org/2023/formulas/mathematics/college/mc5unaql42t1hsjpaxebjghkfvuyypy1a2.png)
Equation 2:
![11=7-1-y](https://img.qammunity.org/2023/formulas/mathematics/college/vlll8xjtpe2pkzyyz6if7fndu2779fiq5a.png)
Equation 3:
![3+7\mleft(p-10\mright)=-38-\mleft(5-3p\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/2dvimt6kgfnjsxeb36dn3qbqhiuzbcyqfj.png)
Equation 4:
![20+5\mleft(3-5A\mright)=-5\mleft(A-6\mright)+5](https://img.qammunity.org/2023/formulas/mathematics/college/ra5s9lcsk78oegvxkbjdjoiosf180x5502.png)
From equation 1, we get:
![4A\text{ + 16-9A+36= 37}](https://img.qammunity.org/2023/formulas/mathematics/college/ja28t026ugdfmzlirh38d5x16wg5l75l8p.png)
this is equivalent to:
![4A\text{ -9A = 37-16-36}](https://img.qammunity.org/2023/formulas/mathematics/college/yuiwk6oqdbzqn966jep11eheoobvjn70fo.png)
this is equivalent to:
![-5A\text{ = -15}](https://img.qammunity.org/2023/formulas/mathematics/college/jboeue3doldgy0o1owqr6yp9qf4xaz2kno.png)
solving for A, we get:
![A\text{ = }(15)/(5)=\text{ 3}](https://img.qammunity.org/2023/formulas/mathematics/college/ngvor3g5r43hgiy4lph8vnc8p26qi4ysse.png)
then A = 3.
From equation 4, we get:
![20\text{ + 15 -25A = -5A +30+5}](https://img.qammunity.org/2023/formulas/mathematics/college/g1g33w81adw1qd39429wnkrm50rh618slb.png)
this is equivalent to:
![-25A+5A\text{ = 30 +5 -20-15}](https://img.qammunity.org/2023/formulas/mathematics/college/pa0lj23a8fp6fvuqh97zx8b2rph9vkjqrr.png)
this is equivalent to:
![-20A\text{ = }0](https://img.qammunity.org/2023/formulas/mathematics/college/s1wypfqb4cykwwv4g1eaogpgnzr7trjthz.png)
Thus A = 0.
But this is a contradiction since we had found that A =3. Then, the linear system has no solution (is incongruent).