To answer this question we will set and solve an equation.
Recall that the perimeter of a rectangle is given by the following formula:
![Perimeter=2length+2width.](https://img.qammunity.org/2023/formulas/mathematics/college/mjj1ee2baw8hc89m6f5rp3wagcyuk6u12q.png)
Substituting Perimeter=316feet and length=97feet we get:
![316ft=2*97ft+2width.](https://img.qammunity.org/2023/formulas/mathematics/college/5b87j0w1ll6qdw00pcr7r30k0ghnfh2viz.png)
Simplifying the above result we get:
![316ft=194ft+2width.](https://img.qammunity.org/2023/formulas/mathematics/college/hloznw0vyauc0rxi27mh3dyv0uozvpvzb4.png)
Subtracting 194ft from the above equation we get:
![\begin{gathered} 316ft-194ft=194ft+2width-194ft, \\ 122ft=2width. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5vuvsjwj7pd3rzm8u3157upum7a7fa04e6.png)
Dividing the above equation by 2 we get:
![\begin{gathered} (122ft)/(2)=(2width)/(2), \\ 61ft=width. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vvea3k06ig6lxfh7bxmlk7f4tjg37zotbj.png)
Answer: 61 feet.