This corresponds to a sinusoidal graph, we have:
Radius= 20 feet, that corresponds to the amplitud (A)
One revolution takes 24 seconds, that corresponds to the period
Min= 3 feet
k=360/24=15
D= bottom distance+ amplitud=3+20=23 feet
![\begin{gathered} \text{The movement is represented by the expression:} \\ y=A\cos (kx)+D \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nfxymh9qtnhct4finuxf6qfr055tl7iirw.png)
Then, let x be the time, in seconds:
![y=20\cos (15x)+23](https://img.qammunity.org/2023/formulas/mathematics/college/oih2r2afjroqmzsh82uq4i0sfqs6iyn8ij.png)
a) To determine Reid's height after 1 minute= 60 seconds, substitute x=60
![\begin{gathered} y=20\cos (15\cdot60)+23 \\ y=9\text{ f}eet \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/riwj6m6py1svc4wax1s1i66x0rfrygkn5n.png)
b) To determine when Reid's height will first reach 18 feet, we have to substitute y=18 feet, and isolate x:
![\begin{gathered} 18=20\cos (15x)+23 \\ 18-23=20\cos (15x) \\ -5=20\cos (15x) \\ -(5)/(20)=\cos (15x) \\ -(1)/(4)=\cos (15x) \\ By\text{ trigonometric properties:} \\ 15x=\cos ^(-1)(-(1)/(4))+2\pi n \\ x=(\cos^(-1)(-(1)/(4)))/(15)+(2\pi n)/(15) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ufe1ddyf3hhcw9a8a907sse0mwufxzckky.png)