227k views
0 votes
The critical values of x for f(x)=2x^3-15x^2+36 x are?

User Elysia
by
4.6k points

1 Answer

4 votes

Answer: 3 and 2

First, find the derivative of the given function


f(x)=2x^3-15x^2+36x
f^(\prime)(x)=6x^2-30x+36

Next, solve for x


f^(\prime)(x)=6x^2-30x+36

*Factor out 6 and equate to 0


6(x^2-5x+6)=0
6(x-3)(x-2)=0

*Divide both sides by 6.


(x-3)(x-2)=0

*Set x - 3 = 0


x-3=0
x=3

*Set x - 2 = 0


x-2=0
x=2

Next, substitute these x values to the original function.

* x = 3


x=3
f(x)=2x^3-15x^2+36x
f(3)=2(3)^3-15(3)^2+36(3)
f(3)=2(27)-15(9)^{}+36(3)
f(3)=54^{}-135+108
f(3)=27

* x = 2


x=2
f(2)=2(2)^3-15(2)^2+36(2)
f(2)=2(8)^{}-15(4)^{}+36(2)
f(2)=16^{}-60^{}+72
f(2)=28

We now have a set of critical points

( 3, 27 ) and ( 2, 28 )

The critical values of x would be 3 and 2.

User MattAllegro
by
5.5k points