Given the data as shown in the table:
Range = max - min = 28 - 20 = 8
The mean of the data = Sum/number
The sum of the data = 20 + 22 * 4 + 28 * 2 = 164
The number of the data = 1 + 4 + 2 = 7
So, the mean of the data = 164/7 = 23.43
The standard deviation will be :
![\sqrt[]{\frac{\sum ^{}_{}(x-\operatorname{mean})^2}{n-1}}]()
The numerator =

So, the standard deviation =
![\sqrt[]{(61.714)/(7-1)}=\sqrt[]{(61.714)/(6)}=3.207](https://img.qammunity.org/2023/formulas/mathematics/college/uy252tizmqjufm4drukbr7sv6elv6x139y.png)
So,
range = 8
mean = 23.43
SD = 3.207
So,
The answer is: option (2) : range < mean