Given in the question:
a.) Mean = 23.2 Gallons
b.) Standard Deviation = 2.7 Gallons
p (more than 25 gallons of bottled water) = ?
We will be using the z - score formula:
![z\text{ = }\frac{(x\text{ -}\bar{\text{ x}})}{\sigma}](https://img.qammunity.org/2023/formulas/mathematics/college/8gi0krnww20lhnwr8s4euwg8iq7dj4ajov.png)
We get,
![z\text{ = }\frac{(x\text{ -}\bar{\text{ x}})}{\sigma}](https://img.qammunity.org/2023/formulas/mathematics/college/8gi0krnww20lhnwr8s4euwg8iq7dj4ajov.png)
![z\text{ = }\frac{(25\text{ - }23.2)}{2.7}\text{ = }(1.8)/(2.7)](https://img.qammunity.org/2023/formulas/mathematics/college/602et1a8k43xv85zdduu4htxz9aul27712.png)
![\text{ z = 0.67}](https://img.qammunity.org/2023/formulas/mathematics/college/2qdhlzt5ts61576nwk6ll9t3ur5sp6af5u.png)
Applying the table,
At z = 0.67, the Probability = 0.2486.
Therefore, Probabilty = 0.2486.