SOLUTION
To get the best estimate, let's perform subtraction of the fractions
![\begin{gathered} 14(1)/(5)-2(5)/(6) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ur801o1rb6ykx0e8u3zzyxrfoiid18khko.png)
First, let us change the mixed fractions to improper fractions, we have
![\begin{gathered} \text{Now, }14(1)/(5),\text{ we say 5}*14\text{ = 70, 71 + 1 = 71,} \\ \text{this becomes } \\ (71)/(5) \\ \text{Now, 2}(5)/(6),\text{ we say 6}*2\text{ = 12, 12 + 5 = 17,} \\ \text{this becomes } \\ (17)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9jifocu7omda8b2y58rxhxy9xh7143j9ys.png)
Subtracting the improper fractions we have
![\begin{gathered} (71)/(5)-(17)/(6) \\ Now\text{ multiply the denominators} \\ 5*6=30,\text{ this becomes the least common multiple } \\ \text{place the 30 as the common denominator } \\ (\square)/(30) \\ \text{cross multiply and place the result as the numera}tor\text{ } \\ 71*6=426 \\ 17*5=85 \\ we\text{ have } \\ (426-85)/(30) \\ =(341)/(30) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9g1f1gvi67o0x6g9ef9jfcd906v80qfcwx.png)
Breaking the fraction we have
![\begin{gathered} (341)/(30) \\ =11(11)/(30) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/44difxvy7pzpsgapksar78ghhsmih80nhw.png)
Looking at the options, the closest to this is 11, option B