Step 1
The circular hot tube is in the shape of a cylinder. Therefore its volume will be;
![v=\pi* r^2* h](https://img.qammunity.org/2023/formulas/mathematics/college/amrpewcwc36cxsyl8hqpiskml8agrt34fc.png)
where;
![\begin{gathered} circumference=2*\pi* r=25.12ft \\ h=3.5feet \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3v2v7cyz2md0cga6xhawqzltjttb88ve6v.png)
Find r, using the circumference
![\begin{gathered} 2*\pi* r=25.12 \\ \pi r=(25.12)/(2) \\ r=(25.12)/(2\pi) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gegm5bpvc27jdaf17p8dzd75rivwny40we.png)
Step 2
Find the volume of the hot tube at 100%
![\begin{gathered} v=\pi*((25.12)/(2\pi))^2*3.5 \\ v=3.5\pi(25.12^2)/(2^2\pi^2) \\ v=3.5*\:50.21453046 \\ v=175.7508566ft^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b2ze741zwsjp22a0mokmk8e4rda4sfpkci.png)
Step 3
Find the recommended capacity which is 80% full
![\begin{gathered} (175.7508566)/(x)=(100)/(80) \\ x=140.6006853ft^3 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h2pj83v849a3pa3e1ufc3wiwjwyme9nlig.png)
Note; 1 Cubic foot=7.48052 gallons of water. Therefore, the water Rita should put in the hot tub will be;
![\begin{gathered} (140.6006853ft^3)/(1ft^3)=(y)/(7.48052) \\ y=1051.766238\text{ gallons of water} \\ \approx1051.77\text{ gallons of water} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vvdjlvvpikt97ivsn1t1uwodzukfvbuchz.png)
Answer;
![1051.77\text{ gallons of water}](https://img.qammunity.org/2023/formulas/mathematics/college/orix2upo2a4olkf3cohrah521x8d4tm8td.png)