66.5k views
2 votes
Maximize the product (x+1)(y+2) given x + y = 10.

1 Answer

2 votes

Solution


\lparen x+1)\text{ \lparen y+2\rparen}

Given that x+y = 10

make x the subject

x = 10 - y


\begin{gathered} x+1)\text{ \lparen y+2} \\ xy+2x+y+2 \\ \lparen10-y\text{ \rparen y+2\lparen10-y\rparen+y+2} \\ 10y-y^2+20-2y+y+2 \end{gathered}
\begin{gathered} collect\text{ like terms} \\ -y^2+10y-2y+y_+22 \\ -y^2+9y+22 \\ thus\text{ f\lparen y\rparen = 0} \\ -y^2+9y+22=0 \\ -y^2-2y+11y+22=0 \\ -y\left(y+2\right)\text{ +11\lparen y+2\rparen = 0} \\ -y+11=0,y+2=0 \\ y=11,y=-2 \end{gathered}

Hence the maximize product will be


\begin{gathered} x+1)\left(y+2\right) \\ since\text{ x+y=10} \\ x=10-y \\ when\text{ y = 11} \\ x=10-11=-1 \\ when\text{ y=-2} \\ x=10--2=12 \end{gathered}
\lparen12+1)\left(-2+2\right)=13\left(0\right)=0

when x = -1, y = 11


\begin{gathered} \left(-1+1\text{ \rparen\lparen11+2\rparen}\right? \\ =0\left(13\right) \\ =0 \end{gathered}

Therefore the maximize product = 0

User Yiannis Gkoufas
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories