The given equation is:
![2\cos x+\sqrt[]{2}=0](https://img.qammunity.org/2023/formulas/mathematics/college/igv1zovjh96tqhuv55wl3uupp5caisme0l.png)
Move the constant to the right, changing its sign:
![\Rightarrow2\cos x=-\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/6b9hcauswucaj9ftw8n7se27a9l3cr51ns.png)
Divide both sides of the equation by 2:
![\begin{gathered} (2\cos x)/(2)=\frac{-\sqrt[]{2}}{2} \\ \Rightarrow\cos x=\frac{-\sqrt[]{2}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q9cvcpg8ar4tl6fy462xensavteuj0yyvz.png)
Since cos t = cos(2π-t), it follows that the equation has two solutions:
![\cos x=-\frac{\sqrt[]{2}}{2};\; \cos \text{ (2}\pi-x)=-\frac{\sqrt[]{2}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/zc3pixr4hmpzqbsxo80du907hcq1dsjnw1.png)
Consider the first equation:
![\begin{gathered} \cos x=-\frac{\sqrt[]{2}}{2} \\ Use\text{ the inverse trigonometry function to isolate x:} \\ \Rightarrow x=\arccos (-\frac{\sqrt[]{2}}{2}) \\ \Rightarrow x=(3\pi)/(4) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f0341xkgodpbop0ggstxtq8pt4zv845g7e.png)
Since the cosine function is periodic, add the period to the solution:

Consider the second equation and apply the same procedure as before:
![\begin{gathered} \; \cos \text{ (2}\pi-x)=-\frac{\sqrt[]{2}}{2} \\ \Rightarrow2\pi-x=(3\pi)/(4)+2\pi k \\ \Rightarrow-x=(3\pi)/(4)-2\pi+2\pi k \\ \Rightarrow-x=-(5\pi)/(4)+2\pi k \\ \Rightarrow x=(5\pi)/(4)-2\pi k \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5d7c2hyvq0wtszkxyjqm6aabf2t8bty0x6.png)
Since k is an integer, then -2πk=2πk.

Hence the solutions are:

Notice that the solutions are required to be in [0,2π).
Hence, substitute integer values of k into the solutions and find values of x that fall in the given interval of solutions.

Other values of k will not fall in the required interval for this solution.
Check for the second solution:

Other values for other integer values do not fall in the interval.
Hence, the solutions are:
