168k views
0 votes
Find the all solutions of this equation in the interval [0,2pi)2cos(x)+sqrt2=0

User Tmtxt
by
5.0k points

1 Answer

7 votes

The given equation is:


2\cos x+\sqrt[]{2}=0

Move the constant to the right, changing its sign:


\Rightarrow2\cos x=-\sqrt[]{2}

Divide both sides of the equation by 2:


\begin{gathered} (2\cos x)/(2)=\frac{-\sqrt[]{2}}{2} \\ \Rightarrow\cos x=\frac{-\sqrt[]{2}}{2} \end{gathered}

Since cos t = cos(2π-t), it follows that the equation has two solutions:


\cos x=-\frac{\sqrt[]{2}}{2};\; \cos \text{ (2}\pi-x)=-\frac{\sqrt[]{2}}{2}

Consider the first equation:


\begin{gathered} \cos x=-\frac{\sqrt[]{2}}{2} \\ Use\text{ the inverse trigonometry function to isolate x:} \\ \Rightarrow x=\arccos (-\frac{\sqrt[]{2}}{2}) \\ \Rightarrow x=(3\pi)/(4) \\ \end{gathered}

Since the cosine function is periodic, add the period to the solution:


\Rightarrow x=(3\pi)/(4)+2\pi k;\; k\in Z

Consider the second equation and apply the same procedure as before:


\begin{gathered} \; \cos \text{ (2}\pi-x)=-\frac{\sqrt[]{2}}{2} \\ \Rightarrow2\pi-x=(3\pi)/(4)+2\pi k \\ \Rightarrow-x=(3\pi)/(4)-2\pi+2\pi k \\ \Rightarrow-x=-(5\pi)/(4)+2\pi k \\ \Rightarrow x=(5\pi)/(4)-2\pi k \end{gathered}

Since k is an integer, then -2πk=2πk.


\Rightarrow x=(5\pi)/(4)+2\pi k

Hence the solutions are:


\begin{cases}x=(3\pi)/(4)+2\pi k \\ x=(5\pi)/(4)+2\pi k\end{cases}k\in Z

Notice that the solutions are required to be in [0,2π).

Hence, substitute integer values of k into the solutions and find values of x that fall in the given interval of solutions.


\begin{gathered} x=(3\pi)/(4)+2\pi k;k=0 \\ \Rightarrow x=(3\pi)/(4)+2\pi(0)=(3\pi)/(4) \end{gathered}

Other values of k will not fall in the required interval for this solution.

Check for the second solution:


\begin{gathered} x=(5\pi)/(4)+2\pi k;k=0 \\ \Rightarrow x=(5\pi)/(4)+2\pi(0)=(5\pi)/(4) \end{gathered}

Other values for other integer values do not fall in the interval.

Hence, the solutions are:


x=(3\pi)/(4),(5\pi)/(4)

User Joshua Turner
by
5.7k points