212k views
5 votes
Verify the identity sin3x = 3 sinx - 4 sin^3x

User ReynierPM
by
8.2k points

1 Answer

4 votes

The identity is


\sin 3x=3\sin x-4\sin ^3x

Since the angle sum formula of sine is:


\sin (a+b)=\sin (a)\cos (b)\text{ + cos(a)sin(b)}

and the double angle formula of cosine is:


\cos (2a)=cos^2(a)-sin^2(a)\text{ = }1-2\sin ^2(a)

then:


\begin{gathered} \sin (3x)\text{ = sin(2x +x) = sin(2x)cos(x) +cos(2x)sin(x)} \\ =(2\sin (x)\cos (x))\cos (x)+(1-2sin^2(x))\sin (x) \\ =\text{ }(2\sin (x)\cos ^2(x))+sin^2(x)-2\sin ^3(x) \\ =\text{ 2sin(x) }\cdot(1-\sin ^2(x))\text{ }+sin^2(x)-2\sin ^3(x) \\ =\text{ }2\sin (x)-2\sin ^3(x)\text{ + }\sin (x)-2\sin ^3(x) \\ =\text{ 3}\sin (x)-4\sin ^3(x)\text{ } \end{gathered}

User Irvin Dua
by
8.4k points

Related questions

asked Apr 25, 2024 56.9k views
David DV asked Apr 25, 2024
by David DV
8.8k points
1 answer
0 votes
56.9k views
asked Jun 26, 2018 33.1k views
Xeos asked Jun 26, 2018
by Xeos
8.1k points
1 answer
0 votes
33.1k views
asked Oct 24, 2024 210k views
Sajas asked Oct 24, 2024
by Sajas
8.2k points
1 answer
1 vote
210k views