ANSWER:
![((x+2)^2\: )/(4)+((y-2)^2)/(9)=1](https://img.qammunity.org/2023/formulas/mathematics/college/goy25hppxyoud1f0l2dv6e7q3o036zjhcn.png)
Explanation:
The general equation of an ellipse with no center at the origin is:
![(\mleft(x-h\mright)^2\: )/(\: a^2)+(\mleft(y-k\mright)^2)/(b^2)=1](https://img.qammunity.org/2023/formulas/mathematics/college/u9kp505m6yg861dz7bl1cpd1uzis8iwo23.png)
Where (h, k) is the center of the ellipse, a is the distance from the center to the edge horizontally, and b is the distance from the center to the edge vertically.
From the graph we obtain these values, just like this:
Therefore, the equation is:
![\begin{gathered} (\mleft(x-(-2)\mright)^2\: )/(\: 2^2)+(\left(y-2\right)^2)/(3^2)=1 \\ (\mleft(x+2\mright)^2)/(4)+(\mleft(y-2\mright)^2)/(9)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ypjfvv67ooet4irj0x54lruanfzd1a2fvh.png)