Given:
• Number if cards in a deck = 52
Let's find the probability of selecting a six or a nine if you randomly select one card from the 52-card deck.
To find the probability, apply the formula:
![P(\text{six or nine)= P(six) + P(nine)}](https://img.qammunity.org/2023/formulas/mathematics/college/dz2osn0dmhx7kfv1o0jw09p1sf1b0qcnd2.png)
Where:
• Number of six's in a deck = 4
,
• Number of nine's in a deck = 4
Thus, we have:
![\begin{gathered} P(six)=(4)/(52) \\ \\ P(nine)=(4)/(52) \\ \\ P(\text{six or nine)=}(4)/(52)+(4)/(52) \\ \\ P(\text{six or nine) = }(4+4)/(52)=(8)/(52)=(2)/(13) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1z9gnekzbb1hzp5qjc5s4ew161ujdby30m.png)
Therefore, the pprobability of selecting a six or a nine is 2/13.
ANSWER:
![(2)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/wqq1yyk6oxnc3euz3acuzzio55y1tc03do.png)