99.5k views
5 votes
Find the inverse of f(x)=x/x+1

User Bubble Bub
by
4.2k points

1 Answer

4 votes

Given:


f(x)=(x)/(x+1)

For inverse function the value of x,y is interchange then solve for y :


\begin{gathered} f(x)=y \\ y=(x)/(x+1) \\ x\rightarrow y \\ y\rightarrow x \end{gathered}


\begin{gathered} y=(x)/(x+1) \\ so\colon \\ x=(y)/(y+1) \\ x(y+1)=y \\ y=xy+x \\ y-xy=x \\ y(1-x)=x \\ y=(x)/(1-x) \end{gathered}

So inverse function is:


\begin{gathered} f(x)=(x)/(x+1) \\ f^(-1)(x)=(x)/(1-x) \end{gathered}

User Sorrell
by
4.1k points