The formula is
![C=c(1+n* i)](https://img.qammunity.org/2023/formulas/mathematics/high-school/re1kpo2aceoundjborgaqyeyu8x88er7mi.png)
Where C is the total, c initial capital, n the number of years and i interest percentage
We can modify the formula to express the total won
![C=c_1(1+n* i_1)+c_2(1+n* i_2)+c_3(1+n* i_3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pu395c3pp6coggw7v1r2kp1afj6dfe2624.png)
Where c1 is the par 5%, C2 the par at 11% and c3 the par at 14%
i1,i2 and i3 the percentage of interest applied to each part
as a total you must use the total earned plus the initial capital
so replacing
![\begin{gathered} 8100+942=c_1(1+1*0.05)+c_2(1+1*0.11)+c_3(1+1*0.14) \\ 9042=c_1(1.05)+c_2(1.11)+c_3(1.14) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4nqz2517nz8r5uiuxcbhckyi3iwkbthw2g.png)
this was our first equation
the next comes from: the sum of all inverted parts is 8100
so
![c_1+c_2+c_3=8100](https://img.qammunity.org/2023/formulas/mathematics/high-school/pjd90dgpaq927mrmqaaaam28koe4mtb2r8.png)
hitrd equation is from: The amount of money invested at 14% was $500 more than the amounts invested at 5% and 11% combined.
![c_3=c_1+c_2+500](https://img.qammunity.org/2023/formulas/mathematics/high-school/dhrulri7r0oa0kjzhhn13c6wxu1mvv01hx.png)
Solution of the equations
![\begin{gathered} 9042=c_1(1.05)+c_2(1.11)+c_3(1.14) \\ c_1+c_2+c_3=8100 \\ c_3=c_1+c_2+500 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/70rgx0u8vtqsc9pstf19iv4493zahrbcxu.png)
we replace the third equation on the second
![\begin{gathered} c_1+c_2+(c_1+c_2+500)=8100 \\ 2c_1+2c_2=8100-500 \\ 2c_1=7600-2c_2 \\ \\ c_1=(7600-2c_2)/(2) \\ \\ c_1=3800-c_2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/imuhcrkayvhjul23pmxgs5v1dmb5k9ngcf.png)
now replace c3 and c1 on the first equation to find c2
![9042=(3800-c_2)(1.05)+c_2(1.11)+(c_1+c_2+500)(1.14)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vmnzmv2ez0yz6vspuvjbke45im4qrflnvv.png)
now replace c1 again
![9042=(3800-c_2)(1.05)+c_2(1.11)+(3800-c_2+c_2+500)(1.14)](https://img.qammunity.org/2023/formulas/mathematics/high-school/v9wrjvrj7qg8t9zpgdy0m2jlwr1tjdyoqz.png)
and find c2
![\begin{gathered} 9042=3990-1.05c_2+1.11c_2+(4300)(1.14) \\ 9042-3990=0.06c_2+4902 \\ 5052-4902=0.06c_2 \\ 150=0.06c_2_{} \\ \\ c_2=(150)/(0.06)=2500 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a0cofdwdr690cud6nptjp66xq4b0htlyqs.png)
the value of c2 or the part at 11% is $2,500
now we can replace c2 in one of the equations we solved, for example this
![c_1=3800-c_2](https://img.qammunity.org/2023/formulas/mathematics/high-school/qacki2f9fd9gpobuxqzb4iugyb5gh14th1.png)
and find c1
![\begin{gathered} c_1=3800-2500 \\ c_1=1300 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/psoocokm65k9n1lp7u8inke2s11bcum7eh.png)
the value of c1 or the part at 5% is $1,300
now we can repalce c1 and c2 on the equation
![c_1+c_2+c_3=8100](https://img.qammunity.org/2023/formulas/mathematics/high-school/pjd90dgpaq927mrmqaaaam28koe4mtb2r8.png)
and find c3
![\begin{gathered} 1300+2500+c_3=8100 \\ c_3=8100-1300-2500 \\ c_3=4300 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/r75yjc0g2p560j80hvux8et39kftcejtng.png)
the value of c3 or the part at 14% is $4,300
the total values are
part at 11% is $2,500
part at 5% is $1,300
part at 14% is $4,300