203k views
3 votes
The centre of the circle passing through the points (8,12),(11,3) and (0,14) is

User IvanRF
by
8.7k points

1 Answer

3 votes

Given:

The points are A(8, 12) , B( 11, 3) , C(0 ,14 ).

Let, O (x, y) be the centre of the circle.

So, the distance of each point from centre will be equal.

OA = OB = OC


\begin{gathered} OA=OB \\ \sqrt[]{(x-8)^2+(y-12)^2}=\sqrt[]{(x-11)^2+(y-3)^2} \\ (x-8)^2+(y-12)^2=(x-11)^2+(y-3)^2 \\ y^2-24y+x^2+208-16x=y^2-6y+x^2+130-22x \\ x^2+208-16x=18y+x^2-22x+130 \\ x^2-16x=x^2-22x+18y-78 \\ 6x=18y-78 \\ x-3y=-13\ldots\ldots\ldots\ldots\text{.}(1) \end{gathered}

Now,


\begin{gathered} OB=OC \\ \sqrt[]{(x-11)^2+(y-3)^2}=\sqrt[]{(x-0)^2+(y-14)^2} \\ (x-11)^2+(y-3)^2=(x-0)^2+(y-14)^2 \\ y^2-6y+x^2+130-22x=x^2+y^2-28y+196 \\ x^2+130-22x=-22y+x^2+196 \\ x^2+130-22x=-22y+x^2+196 \\ -22x=66-22y \\ y-x=3\ldots\ldots\ldots\text{.}.(2) \end{gathered}

Solve the equation (1) and (2).


\begin{gathered} x-3y=-13\ldots\ldots\ldots(1) \\ y-x=3\ldots\ldots\text{.}(2) \\ \text{equation (2) can be written as,} \\ x=y-3\text{ put it in equation 1,} \\ y-3-3y=-13 \\ -2y=-10 \\ y=5 \\ \text{equation (2) becomes,} \\ 5-x=3 \\ 5-3=x \\ x=2 \\ \text{Center= O(x,y)=(2,5)} \end{gathered}

Answer: center of circle is ( 2, 5 ).

User Paul Mikesell
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories