Solution
- The critical points of a graph are the points where the turning points of the graph are zero.
- The turning points are gotten by differentiating the function after which we can equate to zero.
- This is done below:
![f(x)=2x^3-30x^2+126x-10](https://img.qammunity.org/2023/formulas/mathematics/college/320rm4wc8yhnn1scgx2bnwexuwy0930awu.png)
- The way to differentiate is given below:
![\begin{gathered} Given\text{ }f(x)=x^n \\ f^(\prime)(x)=nx^(n-1) \\ \\ \text{ Thus, to differentiate the function }ax^n+bx^(n-1)+cx^(n-2)+dx^(n-3)... \\ f^(\prime)(x)=nax^(n-1)+b(n-1)x^(n-2)+c(n-2)x^(n-3)+... \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bzh07cd70apw2kc338s4uef2pfe75bmil0.png)
For example,
![\begin{gathered} f(x)=5x+6 \\ \text{ Differentiating, we have:} \\ f^(\prime)(x)=5(1)x^(1-1)=5 \\ \\ f(x)=10x^2+3x-20 \\ \text{ Differentiating, we have:} \\ f^(\prime)(x)=10(2)x^(2-1)+3(1)x^(1-1) \\ f^(\prime)(x)=20x+3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8tn86crdqmgoso0pvd6leivdmunc4n8r94.png)
- The differentiation is done below:
![f^(\prime)(x)=6x^2-60x+126](https://img.qammunity.org/2023/formulas/mathematics/college/ym1h1igdqtdzxsgnhxuog0hit14o5pkzf9.png)
- The critical points are where f'(x)= 0. Thus, we have:
![\begin{gathered} 6x^2-60x+126=0 \\ 6x^2-42x-18x+126=0 \\ 6x(x-7)-18(x-7)=0 \\ (x-7)(6x-18)=0 \\ \\ x=7\text{ or }6x=18 \\ x=7\text{ or }x=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zwdwucqjn49go0nq60owtnsafu7g3utkj6.png)
Final Answer
The critical points are x = 7 and x = 3