Step-by-step explanation
a linear pair of angles must add up to 180 degrees,
Step 1
Let
x= angle1
y= angle2
then
![x+y=180\text{ Equation(1)}](https://img.qammunity.org/2023/formulas/mathematics/college/kwt7nxpci9phe8vwwuxv7pocjk2cxcmcgr.png)
Also
One angle is a fifth the size of the other angle, then
![x=(y)/(5)\text{ Equation (2)}](https://img.qammunity.org/2023/formulas/mathematics/college/94lh4bunwayqvpbbil0qa8ualy9cb12cpa.png)
Step 2
replace the value of x from equation(1) in equation(2)
![\begin{gathered} x=(y)/(5) \\ so, \\ (y)/(5)+y=180 \\ (6)/(5)y=180 \\ y=(180\cdot5)/(6) \\ y=150 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xcjknu0hhyefeb1gr88r3hwv9yiqhkopp3.png)
Step 3
replace the value of y=150 in equation (2) to find x
![\begin{gathered} x=(y)/(5) \\ x=(150)/(5) \\ x=30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8vrvunby9yapg9gch19q7ysjusmc4ydqae.png)
Hence, the answer is 30 and 150