233k views
5 votes
If f(x) = -x/4x-1 and g(x) = 2/x-9, algebraically determine when f(x)>g(x)

If f(x) = -x/4x-1 and g(x) = 2/x-9, algebraically determine when f(x)>g(x)-example-1
User Cao
by
8.2k points

1 Answer

3 votes

\: -1<p></p><p><strong>1) </strong> In this question, to determine when f(x) > g(x) we need to plug into this inequality the given values:</p>[tex]\begin{gathered} f(x)>g(x) \\ (-x)/(4x-1)>(2)/(x-9) \\ Take\: the\: LCM\: for\: the\: denominators \\ (-x(x-9))/((4x-1)(x-9))>(2(4x-1))/((4x-1)(x-9)) \\ (-x^2+x+2)/((4x-1)(x-9))>0 \\ Factor\: the\: numerator \\ (-\mleft(x+1\mright)\mleft(x-2\mright))/((4x-1)(x-9))>0 \\ (\left(x+1\right)\left(x-2\right))/(\left(x-9\right)\left(4x-1\right))<0 \end{gathered}

2) Let's identify the valid intervals for this inequality:


\begin{gathered} x+1<0,x<-1 \\ x-2<0,x<2 \\ x-9<0,x<9 \\ 4x-1<0,x<(1)/(4) \\ \\ \end{gathered}

So the answer is:

[tex]\begin{gathered} \: -1
If f(x) = -x/4x-1 and g(x) = 2/x-9, algebraically determine when f(x)>g(x)-example-1
User Naptoon
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories