174k views
5 votes
Identify the vertex of a quadratic function in standard form? Remember to use x=-b/2ay=2x²-16x+31

User Sway
by
6.4k points

1 Answer

7 votes

Answer:

Vertex: (4,-1)

Step-by-step explanation:

Given the quadratic function:


y=2x^2-16x+31

Comparing it with the quadratic function: y=ax²+bx+c


a=2,b=-16,c=31

First, determine the x-value of the vertex using the formula: x=-b/2a


\begin{gathered} x=-(b)/(2a) \\ =-(-16)/(2*2) \\ =(16)/(4) \\ x=4 \end{gathered}

Next, substitute x=4 into y.


\begin{gathered} y=2x^2-16x+31 \\ =2(4^2)-16(4)+31 \\ =2(16)-64+31 \\ =32-64+31 \\ y=-1 \end{gathered}

Therefore, the vertex of the function will be:


(4,-1)

User Thomas Krieger
by
6.6k points