18.1k views
4 votes
Could you help with the

1 Answer

4 votes
Inner angles of a pentagon

We know that the sum of the inner angles of a polygon is given by the product:

(n - 2) · 180º where n is the number of sides of the figure.

This time we have a polygon. Since it has five sides, n =5. Then the result of its inner angles' sum is:

(n - 2) · 180º

↓ n =5

(5 - 2) · 180º = 3 · 180º

= 540º

Then, if we add all the inner angles of this polygon:

∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 540º

Replacing each angle length:

∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 540º

90º + 143º + 77º + 103º + xº = 540º

↓ adding the numbers

413º + xº = 540º

Now, we can solve for x:

413º + xº = 540º

↓substracting 413º both sides

xº = 540º - 413º

xº = 127º

Answer: xº = 127º

Could you help with the-example-1
User Patelb
by
7.9k points