18.1k views
4 votes
Could you help with the

1 Answer

4 votes
Inner angles of a pentagon

We know that the sum of the inner angles of a polygon is given by the product:

(n - 2) · 180º where n is the number of sides of the figure.

This time we have a polygon. Since it has five sides, n =5. Then the result of its inner angles' sum is:

(n - 2) · 180º

↓ n =5

(5 - 2) · 180º = 3 · 180º

= 540º

Then, if we add all the inner angles of this polygon:

∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 540º

Replacing each angle length:

∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 540º

90º + 143º + 77º + 103º + xº = 540º

↓ adding the numbers

413º + xº = 540º

Now, we can solve for x:

413º + xº = 540º

↓substracting 413º both sides

xº = 540º - 413º

xº = 127º

Answer: xº = 127º

Could you help with the-example-1
User Patelb
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories