Given the equation of a straight line as;
![x-y+4=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/foab45z26ctlwilghaublos3pz7n94v6ra.png)
Let's make y the subject of the equation by subtracting (x+4) from both sides of the equation, we have;
![\begin{gathered} x-y+4-x-4=0-(x+4) \\ -y=-(x+4) \\ y=x+4\ldots\ldots\ldots\ldots\ldots\text{.}\mathrm{}\text{equation 1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qv7zx8rb7zzirb3jlw0z3oest8d7z4i8sc.png)
Also, the equation of the curve is;
![y=2x^2-4x+1\ldots\ldots\ldots\ldots\ldots\text{.equation 2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ur4fyjbkspehid7dspzfcblf3vqt7ct5ya.png)
Then, we equate equation 1 and equation 2, we have;
![\begin{gathered} x+4=2x^2-4x+1 \\ 2x^2-4x+1-x-4=0 \\ 2x^2-5x-3=0 \\ 2x^2-6x+x-3=0 \\ 2x(x-3)+1(x-3)=0 \\ x-3=0 \\ x=3; \\ 2x+1=0 \\ 2x=-1 \\ x=-(1)/(2) \\ x=-0.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/g8508nonb9d8jth3jcr3s4yxl1z5thvnep.png)
At point x=3;
![\begin{gathered} y=x+4 \\ y=3+4 \\ y=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/spwy5p441y988kz63jpbotuhuhcnd9mpt5.png)
The coordinate of point P is;
![(3,7)](https://img.qammunity.org/2023/formulas/mathematics/college/fl5b58utg70pu1x586i1cerddjulwcquk0.png)
At point x=-0.5;
![\begin{gathered} y=-0.5+4 \\ y=3.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xd1tajgb958g5po4wst8va5kmr8fvzszvj.png)
The coordinate of point Q is;
![(-0.5,3.5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hb4syffh6lphsveo9re7e48rlyiz1ygunb.png)