At any right angle, the sum of the 2 acute angles is 90 degrees
Then the 2 acute angles are complementary
sin one of the angle = cos the other angle
cos one of the angle = sin the other angle
From the figure, we can see
Triangle UVT is a right angle at V
Then v is the hypotenuse, u and t are the legs od the right angle
Now, let us answer the questions
Part (1):
![\begin{gathered} \sin T=\frac{\text{opposite}}{\text{hypotenuse}} \\ \sin T=(t)/(v) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7tt02xr8ydpcmxo689h65ifo3xvdmb88v1.png)
![\begin{gathered} \cos T=\frac{adjacent}{\text{hypotenuse}} \\ \cos T=(u)/(v) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pc3v6iuj09pkn4qebdyl39m9o25qasrfjb.png)
![\begin{gathered} \sin U=(opposite)/(hypotenuse) \\ \sin U=(u)/(v) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/esgwhsxnh4mm218dxfmvq1plxa22w3enkg.png)
![\begin{gathered} \cos U=\frac{adjacent}{\text{hypotenuse}} \\ \cos U=(t)/(v) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/we9tkitnyaovkt31ib2is128o2x2fujkit.png)
Part (2):
Since
complementary
Part (3):
The correct statements are
![\begin{gathered} \cos T=\sin U\rightarrow1st \\ \sin T=\cos U\rightarrow3rd \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gz62idni0hv3fbqfw11xx5iohbsuytutwa.png)
Part (4):
Since cos a= sin b, then
a + b = 90 degrees
To find the missing angle subtract 73 from 90
![90-73=17](https://img.qammunity.org/2023/formulas/mathematics/college/airpaxeijc1b7x6ceecyjmw1y8k9gtoddc.png)
Then the answer is
![\cos (73^(\circ))=\sin (17^(\circ))](https://img.qammunity.org/2023/formulas/mathematics/college/g23unqcuz2zcu2aea2ik5fqgy54i73p2ap.png)