643 views
5 votes
Solve 2x^2+x-4=0x^2+1/2x+___=2+____

User FabienP
by
4.3k points

1 Answer

2 votes

We have the following expression:


2x^2+x-4=0

By dividing both sides by 2, we get


x^2+(1)/(2)x-2=0

At this point we can apply the quadratic formula:


\begin{gathered} \text{For ax}^2+bx+c=0 \\ x\text{ is given by} \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}

where a is 1, b is 1/2 and c is -2. By substituting these values, we get


x=\frac{-(1)/(2)\pm\sqrt[]{((1)/(2))^2-4(1)(-2)}}{2}

which gives


\begin{gathered} x=\frac{-(1)/(2)\pm\sqrt[]{(1)/(4)+8}}{2} \\ x=\frac{-(1)/(2)\pm\sqrt[]{(33)/(4)}}{2} \\ x=\frac{-(1)/(2)\pm\frac{\sqrt[]{33}}{2}}{2} \\ x=-(1)/(4)\pm\frac{\sqrt[]{33}}{4} \end{gathered}

Then, the solutions are


\begin{gathered} x=\frac{-1+\sqrt[]{33}}{4} \\ \text{and} \\ x=\frac{-1-\sqrt[]{33}}{4} \end{gathered}

User Tbenst
by
4.1k points