Answer:
110 minutes.
Step-by-step explanation:
Let's see the formula of half-life:
![N(t)=N_0\cdot((1)/(2))^{t\text{/h}}.](https://img.qammunity.org/2023/formulas/chemistry/college/s28t9r5ptiqacmbirw9gcezsqeq64m11ny.png)
Where N(t) is the quantity remaining, N₀ is the initial quantity, t is time, and h is the half-life.
The problem is telling us that there is 10 % remaining material after 366 minutes. This 10 % corresponds to the division of the quantity remaining and the initial quantity, i.e. N(t)/N₀, so the formula is:
![\begin{gathered} (N(t))/(N_0)=((1)/(2))^{t\text{/h}}, \\ 10\%=((1)/(2))^{t\text{/h}}. \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/b1gmp74s0rsc931sbqgzfxa1b7sztrxd63.png)
Remember that 10 % in decimals is the same that 0.10:
![0.10=((1)/(2))^{t\text{/h}}.](https://img.qammunity.org/2023/formulas/chemistry/college/7nx4a85dxa4f22f3k503uc4lodhuye8urd.png)
So if we replace the time (in minutes), we will obtain:
![\begin{gathered} 0.10=((1)/(2))^{366\text{/h}}, \\ \log_{(1)/(2)}(0.10)=(366)/(h), \\ h=\frac{366}{\log_{(1)/(2)}(0.10)}, \\ h=110.17\text{ minutes}\approx110\text{ minutes.} \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/fzm6cwgq0w9al1eo20f3hkq85vsoj5sl4x.png)
The answer is that the half-life of the radioactive nucleus of the material is 110 minutes.