Explanation
We are required to identify any horizontal or vertical translations in the given function below:
![f(x)=1-(x+3)^2](https://img.qammunity.org/2023/formulas/mathematics/college/racrg62q0d544xwv22obe8qngu6a2c6dso.png)
This is achieved thus:
First, the function can be rewritten as:
![f(x)=-(x+3)^2+1](https://img.qammunity.org/2023/formulas/mathematics/college/cnsyfu0095saua2oqnjghzx4ywx14dw0eh.png)
We know that the vertex form of a quadratic function is given as:
![\begin{gathered} f(x)=a(x-h)^2+k \\ where \\ (h,k)\text{ }is\text{ }the\text{ }vertex \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s0mmhfvhhunxu4iz6clctu4myvo4rds7xy.png)
We also know that the following translation rules exist:
Therefore, we can conclude the following on the given function:
• The function reflects on the x-axis.
,
• The function shift 3 units to the left.
,
• The function shifts 1 unit upwards.
Hence, the answers are:
![\begin{gathered} Horizontal:3\text{ }units\text{ }to\text{ }the\text{ }left \\ Vertical:1\text{ }unit\text{ }up \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uhyd2eq3ee0ozmapad5ezp35q5t2nufdws.png)