The Moivre's theorem can be used to find roots of complex numbers. Given a complex number:
![z=r(\cos(\theta)+i\sin(\theta))](https://img.qammunity.org/2023/formulas/mathematics/college/ui2ckj60pbc7ed13m927tr4zw1barvqsge.png)
Then, the theorem says, to find the n-th root:
![\sqrt[n]{z}=\sqrt[n]{r}(\cos((\theta+2\pi k)/(n))+i\sin((\theta+2\pi k)/(n)))](https://img.qammunity.org/2023/formulas/mathematics/college/32eko1nq73v85hjixznes6rnfne0c1xi3j.png)
Where n and k are natural numbers. The argument of the sine and cosine functions is the angle of the roots, the n-th root of the module is the module of the n-th root of the complex number.
Thus, to find the fourth root, n =4:
![\sqrt[4]{z}=\sqrt[4]{r}(\cos((\theta)/(4))+i\sin((\theta)/(4)))](https://img.qammunity.org/2023/formulas/mathematics/college/gtenmw7mu15uyrkhukfoop9n3qltre6g9r.png)
Since in step 1 the polar form of the number is written, we can write the formula for the 4-th roots:
![\sqrt[4]{z}=\sqrt[4]{2}(\cos(((\pi)/(3)+2\pi k)/(4))+i\sin(((\pi)/(3)+2\pi k)/(4)))=\sqrt[4]{2}(\cos((\pi)/(12)+(\pi k)/(2))+i\sin((\pi)/(12)+(\pi k)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/q6sny2g7etmhzp135css4moseef4qqvx6k.png)
Thus:
![Module=\sqrt[4]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/rux0xttl6ng2ct5yne2odm3j92jp6821i7.png)
And the angles are:
![\begin{gathered} k=0\Rightarrow(\pi)/(12)+(\pi\cdot0)/(2)=(\pi)/(12)\frac{}{} \\ . \\ k=1\Rightarrow(\pi)/(12)+(\pi\cdot1)/(2)=(7\pi)/(12) \\ . \\ k=2\Rightarrow(\pi)/(12)+(\pi\cdot2)/(2)=(13\pi)/(12) \\ . \\ k=3\Rightarrow(\pi)/(12)+(\pi\cdot3)/(2)=(19\pi)/(12) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b3mpr42ql6p1ke63vt05kld6gwikwnef15.png)
Those are the angles of the fourth roots.
Next, for part 3, we can put all this together to write the roots in polar form:
![\begin{gathered} z_1=\sqrt[4]{2}(\cos((\pi)/(12))+i\sin((\pi)/(12))) \\ . \\ z_2=\sqrt[4]{2}(\cos((7\pi)/(12))+i\sin((7\pi)/(12))) \\ . \\ z_3=\sqrt[4]{2}(\cos((13\pi)/(12))+i\sin((13\pi)/(12))) \\ . \\ z_4=\sqrt[4]{2}(\cos((19\pi)/(12))+i\sin((19\pi)/(12))) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4e6nqm75mzqqn87trw0jysrc208t88tw22.png)