Answer:
(-1/3, 0)
Step-by-step explanation:
To find the x-intercepts, we need to make the function equals to zero and solve for x, so:
![(3x^2+25x+8)/(x^2+7x-8)=0](https://img.qammunity.org/2023/formulas/mathematics/college/jma5dlh8yjgsy8tmqwcs8e1bdje6vy6ij7.png)
Now, we need to factorize the numerator and the denominator as follows:
![(3x^2+25x+8)/(x^2+7x-8)=((3x+1)(x+8))/((x-1)(x+8))=0](https://img.qammunity.org/2023/formulas/mathematics/college/d2txn98zvqe9f4ltpmcb4el0gv75bgony3.png)
So, we can simplify the expression as:
![(3x+1)/(x-1)=0](https://img.qammunity.org/2023/formulas/mathematics/college/ad3eioxifd3613riwo0q5s650ocxubw0ls.png)
Finally, a division is equal to zero only if the numerator is equal to zero. So:
![\begin{gathered} 3x+1=0 \\ 3x+1-1=0-1 \\ 3x=-1 \\ (3x)/(3)=-(1)/(3) \\ x=-(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/abakw5ar5gtn1nhgkf2j2sxotwcgskoqd7.png)
Therefore, the x-intercept of the function is the point (-1/3, 0)