212k views
4 votes
Choose each correct evaluation. Click to select the correct answers. Click again to unselect answers. Leave the incorrect answers unselected.A) log2^8 + log3^9 evaluates to 6.B) log3^27/2log2^4 evaluates to 3/4.C) log9(1/3) * log7^49 evaluates to -1.D) log6^36 + 5 log9^81 evaluatess to 12.E) log6^216 * log5^125 evaluates to 9.

Choose each correct evaluation. Click to select the correct answers. Click again to-example-1
User Jlew
by
3.9k points

1 Answer

6 votes

Verify each expression

Option A


\begin{gathered} \log _28+\log _39 \\ \log _22^3+\log _33^2 \\ 3\log _22+2\log _33 \\ 3(1)+2(1) \\ 5 \end{gathered}

Option B


\begin{gathered} (\log _327)/(2\log _24) \\ \\ (\log _33^3)/(2\log _22^2) \\ \\ \frac{3\log _33^{}}{4\log _22^{}} \\ \\ (3)/(4) \end{gathered}

Option C


\begin{gathered} \log _9(1)/(3)\cdot\log _749 \\ \log _9(1)/(3)\cdot\log _77^2 \\ \log _9(1)/(3)\cdot2\log _77^{} \\ \log _9(1)/(3)\cdot2^{} \\ 2\log _9(1)/(3) \\ \log _9((1)/(3))^2 \\ \log _9((1)/(9))^{} \\ \log _99^(-1) \\ -1 \end{gathered}

Option D


\begin{gathered} \log _636+5\log _981 \\ \log _66^2+5\log _99^2 \\ 2\log _66^{}+10\log _99^{} \\ 2+10 \\ 12 \end{gathered}

Option E


\begin{gathered} \log _6216\cdot\log _5125 \\ \log _66^3\cdot\log _55^3 \\ 3\log _66^{}\cdot3\log _55^{} \\ 3\cdot3 \\ 9 \end{gathered}

therefore

Are correct options B, C, D and E

User George WS
by
4.8k points