SOLUTION
This question simply means we should find the three terms between the -4 and 6 to make this an arithmetic sequence
Let x, y and z be these 3 terms or arithmetic means.
So the arithmetic sequence will be
![-4,x,y,z,16](https://img.qammunity.org/2023/formulas/mathematics/college/ljq6wsbhivniq5iqwelaxtd59rxp1aj0or.png)
Let d be the common difference, so
From nth term of an arithmetic sequence
![\begin{gathered} T_n=a+(n-1)d \\ T_2=a+(2-1)d \\ T_2=a+1d \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m58wrgz25okkv4d2qvhsf4ur4iafajz18b.png)
So x will be
![x=a+1d](https://img.qammunity.org/2023/formulas/mathematics/college/dwt3t6jvk57r2fqnsr3pp20v4bot3drmvi.png)
Hence, y and z becomes
![\begin{gathered} y=a+2d \\ z=a+3d \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4nqbdykgwfbnl7i01s6dey0923iblp3ly6.png)
And the 5th term which is 16 will be given as
![16=a+4d](https://img.qammunity.org/2023/formulas/mathematics/college/2jkysypsj4cr41nszhw9u4w03qw329cwpq.png)
Now note that the first term a = -4. From the equation above the common difference d becomes
![\begin{gathered} 16=a+4d \\ 16=-4+4d \\ 16+4=4d \\ 20=4d \\ d=(20)/(4) \\ d=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h8smgl9kwhuu4lpznechzcgutwrjyw5p2b.png)
The common difference is 5,
Hence x is
![\begin{gathered} x=a+1d \\ x=-4+1(5) \\ x=-4+5 \\ x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c49jy068vr6nadyfgn7dkci71v0if4g5qn.png)
y becomes
![\begin{gathered} y=a+2d \\ y=-4+2(5) \\ y=-4+10 \\ y=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aedtyi6vdvdzlkcdnbc92nencq0jjrd86y.png)
z becomes
![\begin{gathered} z=a+3d \\ z=-4+3(5) \\ z=-4+15 \\ z=11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/585tggxq56sce7q8ryfvdg12sggm6bhz6r.png)
Hence, the answer is 1, 6 and 11