The rate of inflation can be modeled by the following equation:
![y\text{ = 115}*(A)^x^{}](https://img.qammunity.org/2023/formulas/mathematics/college/u6kbp03hqugm81tevb2rqam8z7t6tnbc5f.png)
We have to find A to solve letter a). The exercise gives the information that in 5 years (2004-2009) the price went to $140 (this is the 'y' value of the formula). Therefore:
![140\text{ = 115}* A^5](https://img.qammunity.org/2023/formulas/mathematics/college/4c7ni5469uf61w9um6jcdlxt07upagl5wy.png)
![A\text{ = }\sqrt[5]{(140)/(115)}=1.0401](https://img.qammunity.org/2023/formulas/mathematics/college/jrf6chjnvj1cy2twp3k9pslfuaqrnxk4qb.png)
So the exponential model is going to be:
![y\text{ = 115}*(1.0401)^x](https://img.qammunity.org/2023/formulas/mathematics/college/4vbyu3x1c08oqgxpwcqxh7ohaiq579nl5v.png)
To solve letter b, we have now 11 years (2004-2015) and the objective is to find the 'y' value:
![y\text{ = 115}*(1.0401)^(11)=177.22\text{ dollars}](https://img.qammunity.org/2023/formulas/mathematics/college/goj6dcb2b6zvqybe3antkagsiufh1a06w6.png)
So the answers will be:
![a)\text{ y = 115}*(1.0401)^x](https://img.qammunity.org/2023/formulas/mathematics/college/44e0zwqosrm1zbc7ts6ndersfhjilxdy35.png)
![b)\text{ \$177}.22](https://img.qammunity.org/2023/formulas/mathematics/college/kh7v33qbxgcaw1olei15dfwgpvhuawtjtm.png)