Given:
The roots of the polynomial funcion are -2, -4 and -3 + 4i.
Step-by-step explanation:
The equation has a complex root, -3 + 4i. So there must be a conjugate complex root of the function. The conjugate of complex root -3 + 4i is -3 - 4i. Thus factor of thr functions are,
![(x+2),(x+4),(x+3+4i)and(x+3-4i)](https://img.qammunity.org/2023/formulas/mathematics/college/hh0xye05mwb76xhrsgbvmcw4c1izflff5y.png)
So polynomial function with given factor and with least degree is,
![\begin{gathered} (x+2)(x+4)(x+3+4i)(x+3-4i)=(x+2)(x+4)\lbrack(x+3)^2-(4i)^2\rbrack \\ =(x+2)(x+4)\lbrack x^2+6x+9-16i^2\rbrack \\ =(x+2)(x+4)(x^2+6x+25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jlwy9bdfkpu0m1d0kz5dzdm3e7tuv1jnbi.png)
Simplify the equation further.
![\begin{gathered} (x+2)\lbrack x^3+6x^2+25x+4x^2+24x+100\rbrack=(x+2)(x^3+10x^2+49x+100) \\ =x^4+10x^3+49x^2+100x+2x^3+20x^2+98x+200 \\ =x^4+12x^3+69x^2+198x+200 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/412nvl8lgjm3cl1qlrc10gc7w4uoh4y5j1.png)
So polynomial function is,
![x^4+12x^3+69x^2+198x+200](https://img.qammunity.org/2023/formulas/mathematics/college/xfu7dswy3sbqmqr1sssgxr4g9l4vit8zrh.png)