Given that the function
![f(x)\text{ =13x}](https://img.qammunity.org/2023/formulas/mathematics/college/bcsvkee6i45pnoria0iakvthu02vpfyfe8.png)
is a one-to-one function,
A) Equation for f⁻¹(x), the inverse function.
From the function f(x), interchange x and f(x).
thus,
![\begin{gathered} f(x)\text{ = 13x} \\ in\text{terchanging x and f(x), we have} \\ x\text{ = 13f(x)} \\ \text{divide both sides by 13} \\ f(x)\text{ = }(x)/(13) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mpukxtodpbt8k73jhdtczjvig9tcxb3q9t.png)
thus, equation for f⁻¹(x), the inverse function is
![f(x)\text{ = }(x)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/i5hy7thc0r1wrckbqsphpj9dhsyyf4id03.png)
B) To show that f(f⁻¹(x)) = x and f⁻¹(f(x)) = x
Starting with f(f⁻¹(x)):
Evaluating f(f⁻¹(x)) involves substituting the f⁻¹(x) function into the f(x) function.
In this case, let f⁻¹(x) be z(x).
Thus, we have f(f⁻¹(x)) to be f(z).
![\begin{gathered} z(x)=f^(-1)(x)\text{ = }(x)/(13) \\ f(x)\text{ = }13x \\ \text{thus, substituting the z(x) function into the f(x) function, we have} \\ f(z(x))\text{ = }13((x)/(13)) \\ \Rightarrow x \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/idvzbf25qw0jw53l1upc3imswzmaaphr6q.png)
For f⁻¹(f(x)):
Similarly, evaluating f⁻¹(f(x)) involves substituting the f(x) function into the f⁻¹(x) function.
Thus, we have
![\begin{gathered} f(x)\text{ = 13x} \\ f^(-1)(x)\text{ = }(x)/(13) \\ \text{thus, substituting f(x) into }f^(-1)(x)\text{ gives} \\ f^(-1)(f(x))\text{ = }(1)/(13)(13x) \\ \Rightarrow x \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zrdvg3bqcqfvdqixl65icdpfr470c9znd0.png)
Hence,
![\begin{gathered} f(f^(-1)(x))\text{ = }f((x)/(13)) \\ \text{ = x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6lybhewbxwvne3nhtvzjdpt1lmmw9l7vk6.png)
![\begin{gathered} f^(-1)(f(x))\text{ = }f^(-1)(13x) \\ =\text{ x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ao3amf1jgceei4vp4czosbthurpv2app0y.png)