Answer:
7x-10y=57
Explanation:
The following two points are on a line:
![\begin{gathered} (x_1,y_1)=(-9,-12) \\ (x_2,y_2)=(1,-5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/asxwyzn2i90z3lqr2t68crnharf0fr4dq6.png)
To find the equation of the line, use the two-point formula for the equation of a line.
![$$(y-y_1)/(x-x_1)=(y_2-y_1)/(x_2-x_1)$$](https://img.qammunity.org/2023/formulas/mathematics/college/impjz20t2gmz6ztchybxatjdri3qjcyb34.png)
Substitute the given points:
![(y-(-12))/(x-(-9))=(-5-(-12))/(1-(-9))](https://img.qammunity.org/2023/formulas/mathematics/college/v5ubwansb3wxieizq827mjbd10tfb8wynv.png)
Then simplify:
![\begin{gathered} (y+12)/(x+9)=(-5+12)/(1+9) \\ (y+12)/(x+9)=(7)/(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tyyfndsoh4cslz77qk084zrxiufdnjfdzn.png)
Cross multiply:
![10(y+12)=7(x+9)](https://img.qammunity.org/2023/formulas/mathematics/college/ig422frcus50w0pk3n5vfzpu8y0q4o89af.png)
Open the bracket:
![\begin{gathered} 10y+120=7x+63 \\ 7x-10y=120-63 \\ 7x-10y=57 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1cz4i6x9rh7x25d83pwg8n1utyp6a7vi7h.png)
The equation of the line is 7x-10y=57.