118k views
5 votes
Help please on this question

User Malfy
by
4.0k points

1 Answer

4 votes

Given,


\sin (7x+1)=\cos (x+33)

We know that,


\sin \theta=\cos (90-\theta)
\begin{gathered} \cos (90-(7x+1))=\cos (x+33) \\ \text{equating the parameters of cosines on both sides we get,} \\ 90-7x-1=x+33 \\ 89=7x+x+33 \\ 8x=89-33 \\ 8x=56 \\ x=(56)/(8) \\ x=7 \end{gathered}
\begin{gathered} \text{Angle 1 =(7x+1)} \\ \text{Angle 1 =(7}*7)\text{+1)} \\ \text{Angle 1 =}49+1 \\ \text{Angle 1 =5}0^(\circ) \end{gathered}
\begin{gathered} \text{Angle 2 =(}x+33\text{)} \\ \text{Angle 2 =(}7+33\text{)} \\ \text{Angle 2 = 40}^(\circ) \end{gathered}

User Tim Foley
by
4.1k points