Adding 1.1x to the first equation we get:
![\begin{gathered} -1.1x+0.1y+1.1x=-12.1+1.1x, \\ 0.1y=-12.1+1.1x\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w5nysm942jq9j4zi2idbjtwnjf8eph5t34.png)
Multiplying the above equation by 10 we get:
![\begin{gathered} 0.1y*10=-12.1*10+1.1x*10, \\ y=-121+11x\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xudjctadu67nwus5llql1n9juwjk2verbj.png)
Substituting the above equation in the second one we get:
![-3.3x+0.3(-121+11x)=-36.3.](https://img.qammunity.org/2023/formulas/mathematics/college/tj13jtf1markftetldq4sl97dp9amfrtj8.png)
Simplifying the above equation we get:
![\begin{gathered} -3.3x-36.3+3.3x=-36.3, \\ -36.3=-36.3. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8ypfsdw3x91sekrzmc0s1b0x8korwou6hk.png)
The last equation is true for all (x,y) therefore the system has infinitely many solutions.
Answer: Infinite Number of Solutions.