ANSWER:
The length is 10 feet where the width is 2 feet.
Step-by-step explanation:
Let l represent the length of the rectangle
Let w represent the width of the rectangle
From the question, we have;
![\begin{gathered} l=5w \\ Perimeter(P)=24\text{ feet} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iq9zkmxufr8jsg2klh8xhbgh6urgg2kmhx.png)
Recall that the formula for the perimeter(P) of a rectangle is given as;
![P=2(l+w)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3bvd374ri4qq5bmjfcc1yqnnxj8a3xi5dx.png)
Let's now substitute P with 24 and l with 5w in the above equation and solve for w as seen below;
![\begin{gathered} 24=2(5w+w) \\ 24=2(6w) \\ 24=12w \\ (24)/(12)=(12w)/(12) \\ 2=w \\ \therefore w=2\text{ feet} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/febnw665p2wt136o25hidxf4ph6ixqcq47.png)
So the width of the rectangle is 2 feet
The length of the rectangle can be determined as seen below;
![\begin{gathered} l=5w \\ l=5*2 \\ l=10\text{ feet} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vw4uga0fmtjvd5bpm5sgzbrsycn72cb3lf.png)
So the length of the rectangle is 10 feet