Given:
The perimeter of a rectangle, P=168 in.
Let w be the width and l be the length of the rectangle.
The length of the rectangle is three times its width.
Therefore,
![l=3w](https://img.qammunity.org/2023/formulas/mathematics/college/s0e48mt4g3hqhp723c3ccww13c3emlnbl4.png)
Now, the perimeter of the reactnagle can be expressed as,
![P=2(l+w)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3bvd374ri4qq5bmjfcc1yqnnxj8a3xi5dx.png)
Put l=3w and P=168 in the above equationa and solve for w.
![\begin{gathered} 168=2(3w+w) \\ 168=2*4w \\ 168=8w \\ (168)/(8)=w \\ 21=w \\ w=21\text{ in} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yhg96yi4kd5ryc1qlf7di9xed94k79s4w2.png)
Now, the length of the rectangle is,
![\begin{gathered} l=3w \\ =3*21 \\ =63\text{ in} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s7sv6y32ebw0cna67i5hxocd6w2ewsfkib.png)
Therefore, the length of the rectangle is 63 in and the width of the rectangle is 21 in.