Given the function below
![y=(1)/(3)x^5-2x^4+\cdots+x-6](https://img.qammunity.org/2023/formulas/mathematics/college/uke9ivaq2w604g4al0uzyp48d4kjvlel9m.png)
The end behavior of a function describes it behavior as x approaches +∞ and -∞
The leading term of the given function is
![\begin{gathered} (1)/(3)x^5 \\ \text{And the degree is 5 which is odd} \\ The\text{ leading coefficient is positive }(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jdw27n4y7f0gpzpro7tt7tp37g1vpymak9.png)
Where f(x) = y
When x approaches to -∞, f(x) approaches -∞ and when x approaches +∞, f(x) approaches +∞
Hence, the answer is
![\begin{gathered} As\text{ x}\rightarrow-\infty,f(x)\rightarrow-\infty \\ As\text{ x}\rightarrow+\infty,f(x)\rightarrow+\infty \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fl0oxvov36ta9x9mr1enic7nohhbd8qwyk.png)