We need to use the formula:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
To write the lines with the given slope and point to find the slope-intercept form of the line. Then, we have:
1. First equation:
m = -1/3, (-3, 5) ---> x1 = -3, y1 = 5
![y-5=-(1)/(3)(x-(-3))\Rightarrow y-5=-(1)/(3)(x+3)=-(1)/(3)x-(3)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/3dxkv89ug272tvl815gegxuem97iquxlxm.png)
Then, we have:
![y-5=-(1)/(3)x-1\Rightarrow y=-(1)/(3)-1+5\Rightarrow y=-(1)/(3)x+4](https://img.qammunity.org/2023/formulas/mathematics/college/x5lyrzh7pcfj6nnolkfvcnirx2rpc15khv.png)
Hence, the slope-intercept form for the line is:
![y=-(1)/(3)x+4](https://img.qammunity.org/2023/formulas/mathematics/college/gse9nrgil9ud8varl4j2x9arhu0byawk19.png)
2. Second equation:
m = 1/2, (6, 7) ---> x1 = 6, y1 = 7
Then, we have
![y-7=(1)/(2)(x-6)=(1)/(2)x-(6)/(2)=(1)/(2)x-3\Rightarrow y-7=(1)/(2)x-3](https://img.qammunity.org/2023/formulas/mathematics/college/jfmhpvvazgiltu5n02bo1txbern4v3slmo.png)
Therefore, the slope-intercept form for the line is:
![y=(1)/(2)x-3+7\Rightarrow y=(1)/(2)x+4](https://img.qammunity.org/2023/formulas/mathematics/college/zh8245pqz1vrmahsa34j2ox9ldyd2s5xw1.png)