Answer:
1.0
Explanation:
To find the variance of the probability distribution, we make use of the formula:
![\sigma^2=\sum x^2P(x)-\mu^2](https://img.qammunity.org/2023/formulas/mathematics/college/nc0w44l4glzy8wnzw5yjpt1cwqzd5ijqy8.png)
First, find the expected value, i.e mean of the distribution.
![\mu=\sum xP(x)](https://img.qammunity.org/2023/formulas/mathematics/college/qabhbgo2vbun75dkijbiudxdfsyck1a2p5.png)
From the table, the mean of the distribution = -0.60.
Next, we find the variance.
From the table:
![\sum x^2P(x)=1.36](https://img.qammunity.org/2023/formulas/mathematics/college/zyfcg928hmz3a2kdlas5in9ora96jarh43.png)
Therefore:
![\implies\sigma^2=\sum x^2P(x)-\mu^2=1.36-(-0.60)^2=1.36-0.36=1](https://img.qammunity.org/2023/formulas/mathematics/college/15qo77hj9bgfsi0jxm78yqgoc6vr0ojgl1.png)
The variance of the probability distribution is 1.0