Given the following linear equation :
![14x+9=6x+42](https://img.qammunity.org/2023/formulas/mathematics/college/9mmyqjv7emzozjck2l87d8ayptuqyop2e4.png)
You can follow these steps in order to find the solution (Remember that you must solve for the variable "x"):
1. Applying the Subtraction property of Equality, subtract 6x from both sides of the equation:
![\begin{gathered} 14x+9-(6x)=6x+42-(6x) \\ 8x+9=42 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jzkjzc85uq92vtkar4a77qec9gl8ef7b0m.png)
2. Subtract 9 from both sides of the equation:
![\begin{gathered} 8x+9-(9)=42-(9) \\ 8x=33 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bn20j543nwwmzty38kwt00o3h66bjeb5sc.png)
3. Applying the Division property of Equality, you can divide both sides of the equation by 8:
![\begin{gathered} (8x)/(8)=(33)/(8) \\ x=(33)/(8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dte7d6czgitzsovfmbkh28cnm0zcqv4shu.png)
The solution is:
![x=(33)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/w97789aj3issdeocqh56tz4an5ymqp170m.png)