208k views
0 votes
Using the law of sines, determine whether the given information results in one triangle, two triangle or no triangle at all. Solve any triangle that results. a=8angle B = 57 degreeAngle A =49 degree

Using the law of sines, determine whether the given information results in one triangle-example-1
User MarJamRob
by
7.4k points

1 Answer

1 vote

step 1

Find out the measure of angle C

Remember that

In any triangle, the sum of the interior angles must be equal to 180 degrees

so

A+B+C=180 degrees

substitute given values

49+57+C=180

C=180-106

C=74 degrees

step 2

Find out the length side b

Applying the law of sines


(a)/(sinA)=(b)/(sinB)

substitute


(8)/(s\imaginaryI n49^o)=(b)/(s\imaginaryI n57^o)

Solve for b


\begin{gathered} b=\frac{8*s\mathrm{i}n57^o}{s\imaginaryI n49^o} \\ \\ b=8.89\text{ ---> rounded to two decimal places} \end{gathered}

step 3

Find out the length side c

Applying the law of sines


(a)/(s\imaginaryI nA)=(c)/(s\imaginaryI nC)

substitute


(8)/(s\imaginaryI n49^o)=(c)/(s\imaginaryI n74^o)

solve for c


\begin{gathered} c=\frac{8*s\mathrm{i}n74^o}{s\imaginaryI n49^o} \\ \\ c=10.19\text{ ----> rounded to two decimal places} \end{gathered}

therefore

N of triangles is only one

b=8.89

c=10.19

C=74 degrees

User TwoTimesAgnew
by
7.4k points