Given:
![\sum_{a\mathop{=}1}^(11)64\cdot(0.2)^(a-1)](https://img.qammunity.org/2023/formulas/mathematics/college/l1e9r7bjyvlmjuos0a4v47jepbtrs0sh3s.png)
To find: Sum of first 5 terms
Step-by-step explanation:
Here, the first term is,
![a_1=64](https://img.qammunity.org/2023/formulas/mathematics/high-school/s1ni71fivnoaoqhbfyfwqi7a2es6ey34xi.png)
The common ratio, r = 0.2
The number of terms n = 5.
Using the sum formula for geometric series,
![S_n=(a_1(1-r^n))/(1-r)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rkhz2e5exbn20glbwexc39e4rye8s01xyj.png)
Substituting the values we get,
![\begin{gathered} S_5=(64(1-0.2^5))/(1-0.2) \\ =(64(1-0.2^(5)))/(1-0.2) \\ =79.97 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/13zjstox32wz82erys7j3pbbwf5e8fzyx5.png)
Thus, the sum of the first 5 terms is 79.97.
Final answer:
![S_5=79.97](https://img.qammunity.org/2023/formulas/mathematics/college/80u60ql7h28mcj7wldrasxa99x14jud9je.png)