Answer:
The radius is given below as
![\begin{gathered} r=4 \\ \theta=135^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fezt9p3wafwc8q17851tge3kld0wd6gb5x.png)
The equation of a circle is given below as
![x^2+y^2=r^2(passing\text{ throught the origin\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/xtwdgw3lvd5gv1qri88d7j0kqyjxikxqkn.png)
By converting the polar coordinate to rectangular coordinates, we will have
![x=rcos\theta,y=r\sin\theta](https://img.qammunity.org/2023/formulas/mathematics/college/fjhegpj2wjvvtn63vz1eestana1faftjp2.png)
By substituting the values, we will have
![\begin{gathered} x=r\cos\theta \\ x=4\cos135 \\ x=4*-0.707 \\ x=-2.828 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xk3f3gtqn8ren9kudu8e4dxhenr1mffqa4.png)
![\begin{gathered} y=rsin\theta \\ r=4\sin135 \\ r=4*0.7071 \\ r=2.828 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/602xhg1ktymb5ov2gmnxuie1ywu35po6jo.png)
Hence,
The coordinates of the point on a circle centered at the origin with radius 4 corresponding to an angle of 135 degrees is
![\Rightarrow(x,y)\Rightarrow(-2.828,2.828)](https://img.qammunity.org/2023/formulas/mathematics/college/h4tqzdfnpo9drohk2ybzt9ivay77ygmyxt.png)