To factor the expression:
![x^3+27](https://img.qammunity.org/2023/formulas/mathematics/college/eefbb8tmmx8eb4t58aziqtbp8d97m08rgl.png)
we need to notice that this is equal to:
![x^3+27=x^3+3^3](https://img.qammunity.org/2023/formulas/mathematics/college/shstirq07oz67x4apsvk2ahnfduw7pv9ub.png)
then we have a sum of cubes. A sum of cubes can always be factor as:
![x^3+y^3=(x+y)(x^2-xy+y^2)](https://img.qammunity.org/2023/formulas/mathematics/college/c4hupfyfz5dm8814uhpgymb2vf2l86cpzb.png)
Then we can factor the expression as:
![x^3+27=(x+3)(x^2-3x+9)](https://img.qammunity.org/2023/formulas/mathematics/college/9c50n6uy5pe4pnx3ge2gcdthnulxr5kfg3.png)
To find the roots we equal the factor expression to zero and solve for x:
![(x+3)(x^2-3x+9)=0](https://img.qammunity.org/2023/formulas/mathematics/college/hy4syro98d5tf7qfpo8mhu3d3lg6an66od.png)
This equation implies that:
![\begin{gathered} x+3=0 \\ or \\ x^2-3x+9=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ast01itg1d4dptjtid5esiy6i0kbsbl0c1.png)
The first equation can be solved as:
![\begin{gathered} x+3=0 \\ x=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3ihavprcvhmrhzv0fcudso1meiq0quv1ix.png)
The second one can be solve as:
![undefined]()